If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=X^2-18X-9
We move all terms to the left:
0-(X^2-18X-9)=0
We add all the numbers together, and all the variables
-(X^2-18X-9)=0
We get rid of parentheses
-X^2+18X+9=0
We add all the numbers together, and all the variables
-1X^2+18X+9=0
a = -1; b = 18; c = +9;
Δ = b2-4ac
Δ = 182-4·(-1)·9
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{10}}{2*-1}=\frac{-18-6\sqrt{10}}{-2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{10}}{2*-1}=\frac{-18+6\sqrt{10}}{-2} $
| 21=1-r | | 24+6x=13x | | 8w=80;10 | | 4w=80;15 | | x/(-2)(-3.4)=6.x | | 4(3x-2)-3(2x-4)=0 | | 4x+8=-2-10x | | 2p=64p= | | 0.25x-1=7 | | 9+9=x45 | | (14x3)+(50÷10)–3= | | (3x+10)(4x-15)=180 | | 8-x=53 | | -6m/3=-1 | | 23/5d-3/8d=47/10 | | 2x-1.75x=0.25 | | 1-z/3=-1 | | (3a+12)+(a+40)=180 | | 3y+5y+10y-4y=0 | | Y=19=13=52q | | 3|x=5|x-2 | | -5-z/3=-7 | | a=1/23^8 | | (x)/(x+2)-3=(1)/(x+2) | | 2b-17=31 | | X=140=26=x5 | | 3+3q=-9 | | 6-4v=-10 | | 19-3x*11-2x*3-5x=0 | | 19-3x*11-2x*3-5x=1 | | 5-f=4 | | (2-5i)(3+i)=0 |